제목A-Prot: protein structure modeling using MSA transformer2022-03-21 09:17
첨부파일1.png (625.6KB)


The accuracy of protein 3D structure prediction has been dramatically improved with the help of advances in deep learning. In the recent CASP14, Deepmind demonstrated that their new version of AlphaFold (AF) produces highly accurate 3D models almost close to experimental structures. The success of AF shows that the multiple sequence alignment of a sequence contains rich evolutionary information, leading to accurate 3D models. Despite the success of AF, only the prediction code is open, and training a similar model requires a vast amount of computational resources. Thus, developing a lighter prediction model is still necessary.


In this study, we propose a new protein 3D structure modeling method, A-Prot, using MSA Transformer, one of the state-of-the-art protein language models. An MSA feature tensor and row attention maps are extracted and converted into 2D residue-residue distance and dihedral angle predictions for a given MSA. We demonstrated that A-Prot predicts long-range contacts better than the existing methods. Additionally, we modeled the 3D structures of the free modeling and hard template-based modeling targets of CASP14. The assessment shows that the A-Prot models are more accurate than most top server groups of CASP14.


These results imply that A-Prot accurately captures the evolutionary and structural information of proteins with relatively low computational cost. Thus, A-Prot can provide a clue for the development of other protein property prediction methods. 

ARONTIER TEL: +82-2-597-0365 | FAX: +82-2-587-0365 | Email:
ARONTIER TEL: +82-2-597-0365
FAX: +82-2-587-0365
ADDRESS : 15F, 241, Gangnam-daero, Seocho-gu, Seoul, Republic of Korea
Copyright 2018~2021 ARONTIER. All Rights Reserved.